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One of the areas of study in discrete mathematics deals with sequences, in
particular, infinite sequences. An infinite sequence can be defined1 as a function
f : Z∗ → R that maps a given nonnegative integer (Z∗) to a corresponding
value. The nonnegative integers can be thought of, then, as the position indices
of their associated values. More commonly, however, we use the notation ak

rather than f(k) to denote the kth element in a sequence.
Occasionally, we are given a recurrence relation between an element in a

sequence, ak, and its preceding ones, ak−1, ak−2, . . . , ak−i, where i is a positive
integer and i < k. In such a case, computing the value of ak for large values of
k may be tedious, if not impractical, and it is of interest to derive the relation
between ak and k directly.

A special case of a recurrence relation in a sequence is the second-order linear
homogeneous recurrence relation with constant coefficients. This, by definition,
is the set of all recurrence sequences of the form

ak = A · ak−1 + B · ak−2 , (1)

for all integers k ≥ 2 and real numbers A and B with B 6= 0.
It should be noted that the set of second-order linear homogenous recur-

rence relation is bigger than it may seem at first. For instance, consider the
sequence 1, 2, 4, 8, . . . , 2k, . . ., for all intergers k ≥ 0. This sequence may be de-
fined recursively as ak = 2ak−1 and a0 = 1. However, it can also be defined as
a second-order recurrence relation: ak = ak−1 + 2ak−2, with a0 = 1 and a1 = 2.

In the following discussion, we first examine how relation (1) can be manip-
ulated so that there is a direct relation between ak and k. Next, we provide a
method of finding the sequences that satisfy this relation. We will have to con-
sider different cases, as the way in which the sequences are constructed depends
on the values of A and B. Last, we focus on two specific recursive relations and
analyze their behavior in greater depth; the first sequence we examine is the Fi-
bonacci sequence and the second is the family of arithmetic sequences. Selected
topics that require more rigorous examination are discussed in the appendix.

∗Draft only. All rights reserved c© 2005. Source code with limited rights can be found at
http://www.bens.ws/professional.php.

†I would especially like to thank Rick Taylor; much of the following is a derivation of his
work.

1A more rigorous definition of a sequence is given in the appendix.
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1 Finding the Characteristic Equation

We begin by rewriting relation (1) as a system of two linear equations:{
ak = A · ak−1 + B · ak−2

ak−1 = 1 · ak−1 + 0 · ak−2
.

In a matrix form, this translates to[
ak

ak−1

]
=

[
A B
1 0

] [
ak−1

ak−2

]
.

Similarly, if k ≥ 3, the recurrence relation can be applied again to yield[
ak

ak−1

]
=

[
A B
1 0

]2 [
ak−2

ak−3

]
.

We can repeat this process until reaching the initial values a0 and a1, resulting
in [

ak

ak−1

]
=

[
A B
1 0

]k−1 [
a1

a0

]
. (2)

From linear algebra we know that if a matrix W is diagonalizable, then W k

can be rewritten as PUkP−1, where U is a diagonal matrix with the eigenvalues
of W as its entries and P is a matrix of column eigenvectors. The ith eigenvector
in P corresponds to the ith eigenvalue in U . Furthermore, W is guaranteed to be
diagnolizable if it has distinct eigenvalues. We will examine the case of indistinct
eigenvalues later, but for now we assume that this restriction is satisfied.

Recall that λ is an eigenvalue of a matrix W iff it satisfies the equation

det(W − λI) = 0,

where I is the identity matrix.
Let W be the transition matrix. That is, W = [ A B

1 0 ]. We proceed by finding
the eigenvalues of W .

det
([

A B
1 0

]
− λI

)
= 0

det
[
A− λ B

1 −λ

]
= 0

(A− λ)(−λ)−B = 0

λ2 −Aλ−B = 0 . (3)

We call equation (3) the characteristic equation of matrix W . The characteristic
equation can have two distinct real roots, a repeated real root, or a pair of
complex conjugate roots. For now, we are only interested in the first case. We
let the two roots be λ1, λ2.
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1.1 Two Distinct Real Eigenvalues

Next, we find two linearly independent eigenvectors of W . Let p1 =
[ p1,1

p1,2

]
be

an eigenvector associated with λ1. Then it must be the case that[
A B
1 0

]
p1 = λ1p1[

A− λ1 B
1 −λ1

]
p1 = 0

1 · p1,1 − λ1 · p1,2 = 0 .

Choose p1,2 = 1, then p1,1 = λ1, and p1 =
[

λ1
1

]
. Similarly, p2 =

[
λ2
1

]
. Vectors

p1 and p2 are guaranteed to be linearly independent as they were derived from
two distinct eigenvalues, λ1 and λ2.

Thus, equation (2) translates to[
ak

ak−1

]
=

[
A B
1 0

]k−1 [
a1

a0

]
=

[
p1 p2

] [
λ1 0
0 λ2

]k−1 [
p1 p2

]−1
[
a1

a0

]
=

[
λ1 λ2

1 1

] [
λ1 0
0 λ2

]k−1
[

1
λ1−λ2

−λ2
λ1−λ2

−1
λ1−λ2

λ2
λ1−λ2

] [
a1

a0

]

[
ak

ak−1

]
=


k−1∑
j=0

λj
1λ

k−1−j
2 −λ1λ2

k−2∑
j=0

λj
1λ

k−2−j
2

k−2∑
j=0

λj
1λ

k−2−j
2 −λ1λ2

k−3∑
j=0

λj
1λ

k−3−j
2


[
a1

a0

]
. (4)

Define the first two elements of the sequence to be a0 = 1, a1 = λ1. The
reason behind that definition will become clearer in a short while. If we let
k = 2, we can find the third term of the sequence:2[

a2

a1

]
=

[
λ1 + λ2 −λ1λ2

1 0

] [
λ1

1

]
[
a2

a1

]
=

[
λ2

1

λ1

]
.

Hence, the third element, a2, is λ2
1. Repeated iterations for different ks derive

the sequence 1, λ1, λ
2
1, . . . , λ

n
1 , . . .. The same, of course holds for the sequence

1, λ2, λ
2
2, . . .. Whenever it is not needed to distinguish between the two se-

quences, we will drop the subscripts and refer to the two sequences collectively
as

1, λ∗, λ
2
∗, . . . . (5)

2Note that for k = 2 we get λ1 + λ2 = A and −λ1λ2 = B, effectively bringing us back to
matrix W . Also, we define

P−1
0 = 0.
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To check that these sequences indeed satisfy relation (1), we need to pick
three arbitrary consecutive terms and show that the relation holds. Let ak−2 =
λk−2
∗ , ak−1 = λk−1

∗ , and ak = λk
∗. Relation (1) is then rewritten as follows:

λk
∗ = A · λk−1

∗ + B · λk−2
∗ .

Divide by λk−2
∗ and regroup terms to receive

λ2
∗ −Aλ∗ −B = 0 .

But this is no different than the characteristic equation (3). We already know
that λ1 and λ2 are the only possible solutions for that equation. So we have
shown that the sequences (5) satisfy the recursive relation.

While these sequences are the only two to satisfy the characteristic equation,
any linear combination of the two, in fact, satisfies the original recursive relation.
To illustrate this fact, define a sequence s0, s1, s2, . . ., such that each sk =
c1λ

k
1 + c2λ

k
2 . Substituting in relation (1) yields

sk = A · sk−1 + B · sk−2

c1λ
k
1 + c2λ

k
2 = A · (c1λ

k−1
1 + c2λ

k−1
2 ) + B · (c1λ

k−2
1 + c2λ

k−2
2 )

c1λ
k
1 + c2λ

k
2 = c1 · (Aλk−1

1 + Bλk−2
1 ) + c2 · (Aλk−1

2 + Bλk−2
2 )

c1λ
k
1 + c2λ

k
2 = c1λ

k
1 + c2λ

k
2 .

We see now that there are infinitely many ways to define a sequence that satisfies
the recurrence relation. Our earlier choice of a0 = 1, a1 = λ∗ was somewhat
arbitrary in that sense. However the sequences formed by that choice are the
“simpleset” ones for a basis.

1.2 An Eigenvalue with a Multiplicity of Two

When the characteristic equation (3) has only one zero, we can no longer have
two distinct eigenvalues and, therefore, no two linearly independent eigenvec-
tors to form a basis. This scenario can happen only if the discriminant of the
characteristic equation is zero, namely A2 + 4B = 0. The following relations
can be drawn from that fact:

B = −A2

4

λ =
A

2
.

(6)

We will return to these properties shortly.
You may recall that a similar problem of repeated roots occasionally arises in

a second-order homogenous differential equation with constant coefficients. We
will examine how this problem is solved for differential equations and attempt to
find a similar solution for our case. As we shall see, the similarities are striking.
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Consider a differential equation

f ′′(t) + A · f ′(t) + B · f(t) = 0 , (7)

where A and B are real numbers, and B 6= 0. Leonard Euler showed that the
solutions for equation (7) depend on its corresponding characteristic equation
[[[CITE]]]

r2 + Ar + B = 0 .

If the characteristic equation has two real roots, r1 and r2, then the fundamental
solutions for (7) are er1t and er2t. These two solutions form a basis where every
linear combination of the two is also a solution for (7). This result is analogous
to the one we derived in the previous section.

Furthermore, it can be shown [[[CITE]]] that if the characteristic equation
has only one root, r, then the fundamental solutions for (7) are ert and tert.
Since t is an independent variable, rather than a constant, the two solutions are
linearly independent.

This conclusion suggests that a similar approach might be applied in our
case. Consider the sequence (5). If we assume that er is analogous to λ and t
is to the exponent, then a candidate for the second member in the basis is the
sequence

0λ0, 1λ1, 2λ2, 3λ3, . . .

= 0, λ, 2λ2, 3λ3, . . . . (8)

We proceed by checking that the sequence satisfies relation (1) under the
constraints set forth in (6). Pick three arbitrary consecutive terms, ak−2 =
(k − 2)λk−2, ak−1 = (k − 1)λk−1, and ak = kλk. For k ≥ 2 we have

ak = A · ak−1 + B · ak−2

kλk = A(k − 1)λk−1 + B(k − 2)λk−2

kλ2 = A(k − 1)λ + B(k − 2)

0 = −k(λ2 −Aλ−B)−Aλ− 2B

0 = −A2

2
+

A2

2
.

Therefore, sequence (8) satisfies the recurrence relation. Additionally, any linear
combination of the two sequences is also a solution.

1.3 Complex Conjugate Eigenvalues

The third case we need to consider is when the characteristic equation (3) has
no real roots. In such a case, the two roots, λ1 and λ2 are a pair of complex
conjugates. The real and imaginary parts of both eigenvalues are <λ∗ = A

2

and =λ∗ = ±
√
−A2−4B

2 , respectively. The process of finding the eigenvectors of
such a matrix is identical to the one presented in section 1.1, resulting in the
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eigenvectors p1 and p2. In fact, the relation between ak and k is the one shown
in equation (4) and brought here again for easy reference:

[
ak

ak−1

]
=


k−1∑
j=0

λj
1λ

k−1−j
2 −λ1λ2

k−2∑
j=0

λj
1λ

k−2−j
2

k−2∑
j=0

λj
1λ

k−2−j
2 −λ1λ2

k−3∑
j=0

λj
1λ

k−3−j
2


[
a1

a0

]
. (4)

Therefore, the sequences that satisfy relation (1) are{
1,<λ∗ + =λ∗i, (<λ∗ + =λ∗i)2, (<λ∗ + =λ∗i)3, . . . , (<λ∗ + =λ∗i)k, . . .

1,<λ∗ −=λ∗i, (<λ∗ −=λ∗i)2, (<λ∗ −=λ∗i)3, . . . , (<λ∗ −=λ∗i)k, . . .
, (9)

where i2 = −1. Applying the binomial theorem, the kth term in each sequences
can be rewritten as

k∑
j=0

(
k

j

)
(<λ∗)

j (=λ∗)
k−j

ik−j or

k∑
j=0

(
k

j

)
(<λ∗)

j (−=λ∗)
k−j

ik−j .

Most terms in these two sequences contain both real and imaginary parts3.
As we showed in the discussion in section 1.1, any linear combination of the two
sequences also satisfies the recurrence relation. It might be of interest, therefore,
to come up with a different basis in which one of the sequences is entirely real.

Such a basis is constructed if we add the two sequences in (9) to form a third
sequence, u1, u2, . . . , uk, . . .. We examine the kth term in that sequence:

uk =
k∑

j=0

(
k

j

)
(<λ∗)

j (=λ∗)
k−j

ik−j +
(

k

j

)
(<λ∗)

j (−=λ∗)
k−j

ik−j

=
k∑

j=0

(
k

j

)
(<λ∗)

j
ik−j

[
(=λ∗)

k−j + (−=λ∗)
k−j

]
.

When the difference k − j is odd, the two terms inside the brackets offset each
other, and the product is zero. When the difference k − j is even, then ik−j is
guaranteed to be real. Therefore, each term uk is real.

Similarly, subtracting the two sequences in (9), derives a fourth sequence in
which the terms are entirely imaginary.

3But be careful not to confuse the real and imaginary parts of λ∗ with the real and
imaginary parts of the terms in the sequences; with the exception of the first two terms in
each sequence, any term is a complex number that contains both <λ∗ and =λ∗ in its real and
imaginary parts.
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2 Two Case Studies

Next we turn to see some interesting properties of second-order linear homoge-
nous recurrence relations with constant coefficients. We examine two cases: the
Fibonacci sequence and the family of arithmetic sequences.

2.1 The Fibonacci Sequence

The Fibonacci sequence is a sequence in which each term is the sum of the two
previous ones. Put it formally,

Fk = Fk−1 + Fk−2 , (10)

for all integers k ≥ 2. Additionally, the first two terms are defined, F0 = 0 and
F1 = 1. Quite surprisingly, the sequence appears in nature and was also shown
to have many applications in science. [[[CITE]]]

If we define each vector in the Fibonacci sequence as Fk =
[

Fk

Fk−1

]
, for all

integers k ≥ 1, we can represent this sequence as a system of two equations in
a matrix form: [

Fk

Fk−1

]
=

[
1 1
1 0

] [
Fk−1

Fk−2

]
.

And equation (2) for this case becomes[
Fk

Fk−1

]
=

[
1 1
1 0

]k−1 [
1
1

]
.

Note that the transition matrix is symmetric. Therefore, applying the spec-
tral theorem, we know that the eigenvectors for it are orthogonal. We continue
by finding the eigenvalues and eigenvectors. The characteristic equation for the
Fibonacci sequence is

λ2 − λ− 1 = 0 .

The are two solutions for the characteristic equation: λ1 = 1+
√

5
2 and λ2 =

1−
√

5
2 . The corresponding eigenvectors are p1 =

[
λ1
1

]
and p2

[
λ2
1

]
.

In figure 1, we present the eigenspace for the Fibonacci sequence. Note that
the two eigenvectors are orthogonal as the spectral theorem assured. Next, we
need to consider to issue of stability.

Recall that if a matrix A has an eigenvalue λ and a corresponding eignevector
v, then Av = λv. The underlying concept is that when the linear transformation
A is applied to an eigenvector v it scales it by its corresponding eigenvalue
λ. Thus, each eigenvector spans a one-dimensional subspace4 which, in the
context of this discussion, we call an equilibrium state. This equilibrium state
is completely analogous to the equilibrium state in differential equations.

4Note that, by definition, the zero vector is not an eigenvector. Hence, the term subspace
may be slightly misleading, if not inaccurate.
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-
x1
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3] p1p2

λ1λ2

1

Figure 1: Eigenspace for the Fibonacci Sequence

Generally speaking, equilibrium states can be stable, partially stable, or
unstable. In all cases, once a vector is in the equilibrium state, repeated trans-
formation will ensure that it stays there. The three equilibrium states differ,
however, in how vectors in their vicinity are transformed. A vector near a sta-
ble equilibrium will be “pushed”5 toward the equilibrium state, though it will
never reach it. A vector near an unstable equilibrium will be “pushed” away
from the equilibrium state. Lastly, a vector near a partially stable state would be
“pushed” either away or toward the equilibrium state, depending on its location
relative to the equilibrium state.

In our case, λ1 is positive, meaning that any vector on or around the equi-
librium state spanned by p1 will be dilated, or scaled up, away from the origin.
Vectors that are closer to the equilibrium state will be more affected than those
farther away from it. The direction in which the vectors are dilated is deter-
mined by their dot product with p1: those with a positive dot product tend
toward p1, and those with a negative dot product tend toward −p1. In partic-
ular, vectors to the right of the subspace spanned by p2 will steer further away
of it to the right, and those to the left of it will steer further away to the left.
As mentioned earlier, vectors on the subspace spanned by p2 will stay there.
Put it formally, p2 spans an unstable equilibrium state.

In contrast, λ2 is negative. In this case, vectors that are not orthogonal to
p2 are shrunk, or scaled down, toward the origin. That is to say, any vector
that is not on the subspace spanned by p1 will approach it. Formally, p1 spans

5By “pushed” we mean the change in the distance between the vector and the equilibrium
state, once the linear transformation is applied on the vector. This distance is measured by
the difference between the vector and its projection onto the equilibrium state subspace.
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a stable equilibrium state.
Figure 2 illustrates the previous discussion pictorially. We show the first

four terms of the Fibonacci sequence as vecotrs. Note how each subsequent
vector approaches the subspace spanned by p1 while oscillating about it. This
characteristic is due to fact that λ2 is negative. Also, the magnitude of each
subsequent vector is increasing. This is due to the fact that λ1 is positive.

6
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Figure 2: Four Terms of the Fibonacci Sequence

2.2 Arithmetic Sequences

In our second example we discuss the following sequence:

Gk = 2Gk−1 −Gk−2 , (11)

for all integers k ≥ 2. We start by defining the first two terms as G0 = 1 and
G1 = 1. First observe that if G1 = G0 then G2 = G0, and indeed Gk = G0 for
all integers k > 0.

Similar to the previous discussion, define Gk =
[

Gk

Gk−1

]
, for all integers

k ≥ 1. We can represent the sequence in (11) as a system of two equations in a
matrix form: [

Gk

Gk−1

]
=

[
2 −1
1 0

] [
Gk−1

Gk−2

]
.

Equation (2) for this case becomes[
Gk

Gk−1

]
=

[
2 −1
1 0

]k−1 [
1
1

]
.
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If we proceed to find the eigenvalues of this system, we find that the charac-
teristic equation, λ2 − 2λ + 1 = 0, has only one root λ = 1. This is an example
of an eigenvalue with a multiplicity of two. Finding two linearly independent
eigenvectors is therefore impossible.

Eigenvector p = [ p1
p2 ] has to satisfy the equation

1 · p1 − λ · p2 = 0
p1 − p2 = 0 .

Choose p1=1, then p2=1, and p = [ 1
1 ].

Remember from equation (8) that a second, linearly independent sequence
that satisfies relation (11) is

0, λ, 2λ2, 3λ3, . . . ,

which in the case of λ = 1 becomes

0, 1, 2, 3, . . . .

Furthermore, we showed that any linear combination of the sequences{
1, 1, 1, 1, . . .

0, 1, 2, 3, . . .
(12)

also satisfies relation (11).
Note that any arithmetic sequence can be written as linear combinations of

the above sequences. If ak = ak−1 + c for integers k ≥ 1 and a0 = d, then
ak = c · k + d · 1, or the second sequence in (12) multiplied by c added to the
first sequence multiplied by d. Therefore, we have shown that any arithmetic
sequence satisfies the recurrence relation given in (11).
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