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1 Foundations: Leontief Input–Output Model

Leontief Input–Output Model is a model that analyzes the production and con-
sumption in the economy as a whole. We are not interested in viewing the
economy from the industries’ perspective and even less so, from the individual
firms’ perspective. The model is used to analyze national, and even global,
economies. The need for this model stems from the need to know how much
goods and services we should produce in order to satisfy consumers’ demand.
The irony is apparent: while the model relies on a market economy to use prices
as signals, by the very use of it we imply a central planning of the economy.

1.1 Exchange Tables

The process of generating Leontief Input–Output Model starts with a statistical
survey of the economy. The economy is divided into sectors, or industries1, and
we survey two quantities in particular: what the total output of each sector is;
and what and how much inputs each sector uses.

A problem arises when we realize that outputs of one industry serve as
inputs of other (and quite commonly—the same) industries. As industries are
depended upon other industries in order to produce their own output, they
demand a greater production of services and goods. We call the collection of
those demands the intermediate demand . intermediate

demandThe data collected by this survey is presented in an input–output table or

input–output
table

an exchange table. In addition to the output and inputs of each industry, we

exchange table

also look at the consumption of the open sector , the only sector that consumes

open sector

goods and services without producing any.
∗All rights reserved c© 2005.
1We will use these two terms interchangeably.
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Let us consider a simplified economy with just three industries: coal, elec-
tricity, and steel. Table 1 presents a possible2 exchange table for that economy.

Coal Electricity Steel Open Sector
Coal 0 140 30 30
Electricity 50 60 60 330
Steel 80 40 30 150
Total Gross Output 200 500 300

Table 1: Annual Exchange of Goods and Services in a Simplified Economy (in
billions of US$)

The table tells us, for instance, that the coal industry consumes $80 billion
worth of steel, or that the steel industry uses $30 billion worth of its own output.
Note that the total gross output at the bottom of each sector’s column is simply
the sum of the output along the sector’s row.

1.2 Consumption Matrices

The next step is to build a consumption matrix from the data presented in consumption
matrixthe exchange table. We start by dividing each sector’s input by its total gross

output. Table 2 shows the outcome of that step.

Coal Electricity Steel
Coal 0.00 0.28 0.10
Electricity 0.25 0.12 0.20
Steel 0.40 0.08 0.10

Table 2: Inputs Consumed Per Unit of Sector Output

This representation allows us to measure the productivity of each industry; productivity

if the entries in a column of a particular industry sum up to less than one, the
industry is productive. Otherwise, it is not. In the scope of our discussion, we
will limit ourselves to productive industries alone. Such restriction is feasible
because it assumes that industries that are not productive3 will have to either
reduce their inputs or raise the prices of their outputs in order to survive. In
dealing with national markets, the market also has the option to turn to the
international market for alternatives.

Reading across the rows, however, takes a different meaning. If before we
could sum up each row and figure how much of each industry’s output goes

2And by possible we mean, of course, not possible at all; the figures do, however, sum up
nicely while illustrating our arguments.

3Note that our definition of productivity differs significantly from other commonly used
definitions.
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for intermediate demand, such summation is no longer possible. [[[More on the
meaning of rows. –Ben]]]

Considering the two previous observations, the nature of this table gives rise
to the use of column vectors in a matrix as a mean of representing our findings.
The consumption matrix C is as follows:

C =

 0.00 0.28 0.10
0.25 0.12 0.20
0.40 0.08 0.10

 .

We let the final demand d be a vector representing the open sector entries in final demand

Table 1:

d =

 30
330
150

 .

If we denote the production vector as a column vector x, we can conclude that production
vectorthe intermediate demand is nothing but Cx: the consumption matrix multiplied

on the right by the production vector.
The key here is efficiency. We are interested in the production vector x

that will satisfy the intermediate and final demands but will not involve wasted
resources. Therefore, we can conclude that x must satisfy

x = Cx + d .

Solving for x yields
x = (I − C)−1d ,

where I is the identity matrix. In our example, we find that

x =

 200
500
300

 ,

which are also the entries of the total gross output row. This shouldn’t come
as a surprise; we started by stating what the economy is producing. The real
power of this equation lies in our ability to determine how production should
change to satisfy a given change in the final demand.

2 Mapping to a Mixed-Strategy Game in Game
Theory

The aim of this work is to map Leontief Input–Output Model to a mixed-strategy
game in Game Theory. In doing so, we need to revert back to the consumption
matrix C that was presented before:

C =

 0.00 0.28 0.10
0.25 0.12 0.20
0.40 0.08 0.10

 .
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Since we assumed that all sectors are productive, we can conclude that each
column sums up to less than one. However, using a dummy variable, we can dummy variable

force the sum to one. We will return to that idea shortly, but for now, let’s
examine the properties of this matrix.

If we look at each industry as a pure strategy, each column of that matrix
can be viewed as a strategy profile of the row player. The row player randomizes strategy profile

among her pure strategies in the probability shown by the appropriate entry.
For example, given the column player’s left-most strategy (coal), the row player
would elect her bottom-most strategy (steel) with a probability of 0.40, or 40%.

The “real-life” sense of that statement is as follows: “A production of one
dollar-worth of coal requires 0.40 dollar-worth of steel.” It is important to
realize the difference between “one dollar-worth of” and “one unit of.” We are
not implying any connection between the output-units of different industries—
only the money value of these outputs. For example, in order to produce one
kWh of electricity, the factory would need a specific amount of coal, no matter
what the price of coal might be. However, the production of one dollar-worth
of electricity is greatly depended on the price of coal.

As we noted before, there is no strict relation between the entries across
each row; each column spells out the needed input to produce one dollar-worth
of output, but makes no claim regarding the outputs of other industries. To
adjust for that fact, we will construct a weighted consumption matrix . weighted

consumption
matrix2.1 Weighted Consumption Matrices

Recall that the total gross output, or the production vector is

x =

 200
500
300

 .

We will weigh the production vector such that its entries sum up to one:

xw =

 0.2
0.5
0.3

 .

We define the weighted consumption matrix as Cw = Cxw. The computation
yields

Cw =

 0.00 0.14 0.03
0.05 0.06 0.06
0.08 0.04 0.03

 .

This computation essentially undoes the process that yielded the original con-
sumption matrix. Note that the resultant weighted consumption matrix is noth-
ing more than the initial exchange table, expressed in terms of relative produc-
tion rather than money value.

However, the weighted consumption matrix carries a couple of important
features. Firstly, we can easily read the relative amount of resources that are
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used to create more output, compared to the amount that is consumed by
the public. If we sum up all the entries we can conclude that the economy is
producing 49% of its output toward intermediate demand. The rest is produced
to meet final demand. But the real beauty lies in the mapping of this model to
a mixed-strategy game.

We look at the production process as if it is split to two stages: interme-
diate production and final production. We let the column player be the Final Final Producer

Producer FP, and the row player, the Intermediate Producer IP. The econ-
Intermediate
Produceromy is then viewed as a repeated game. In each iteration of the game, each of

the players elects a strategy (industry) according to the weighted consumption
matrix. Earlier, we observed that, given the column player’s left-most strat-
egy (coal), the row player would elect her bottom-most strategy (steel) with a
probability of 0.40, or 40%. Now we can conclude that the probability of the
the Final Producer electing coal while the Intermediate Producer elects steel is
8%. The meaning of that assertion is simply noting that the economy drives 8%
of its total production to “create” coal out of steel. We will use the weighted
consumption matrix to construct a strategy profile for each of the players.

The Intermediate Producer’s strategy profile is a column vector in which
each entry is a summation of the respective row in the weighted consumption
matrix. We will add a fourth entry that corresponds to our dummy variable:
the consumer demand. The resultant vector sIP will be

sIP =


0.17
0.17
0.15
0.51

 .

Similarly, we can construct the Final Producer’s strategy profile sFP:

sFP =


0.13
0.24
0.12
0.51

 .

2.2 Payoff Matrices

So we have defined strategy profiles for both players, but in order to make any
use of this model, we need to identify a payoff matrix . Recall that a two-player payoff matrix

payoff matrix is a table of ordered pairs in which the first element is the payoff ,
payoffor utility for the row player and second element is the payoff for the column
utilityplayer. The assumption is that each player will pick a strategy that maximizes

his payoff. We aim to simplify this model as much as possible, so our intention
is to build a payoff matrix that describes a zero-sum game, a game in which zero-sum game

one player’s gain is the other’s loss. The intuitive sense of using a zero-sum
game is as follows: the Final Producer will try to minimize production. The
Intermediate Producer, on the other hand, will try to maximize production.
Right in between lies our equilibrium point.
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Once again, for simplicity’s sake, we would prefer to use Nash Equilibria Nash
Equilibriumas our equilibrium points. Loosely speaking, a Nash Equilibrium is achieved

if no player can benefit by changing his strategy while the other players keep
their strategies unchanged. An important concept to comprehend here is that
no player would mix two (or more) strategies unless she is indifferent between
them. Specifically, given FP’s strategy profile, IP’s expected utility from each of expected utility

her strategies should be the same. For example, consider the famous Battle of
the Sexes game presented in Table 3.

X Y
A (2,1) (0,0)
B (0,0) (1,2)

Table 3: Battle of the Sexes Game

The two Nash Equilibria of this game are {A,X} and {B,Y} as no player
can do better by changing his strategy. However, we are interested in the third
Nash Equilibrium of this game: a mixed-strategy equilibrium.

Let Ur(A) be the row player’s expected utility from choosing strategy A. We
assume that the column player randomizes between his two strategies X and Y
with the probabilities p and 1 − p, respectively. Ur(A), then, is calculated by
summing the payoffs for the row player across strategy A, weighted by the
respective probabilities of each payoff. Namely,

Ur(A) = 2 · p + 0 · (1− p) .

Similarly,
Ur(B) = 0 · p + 1 · (1− p) .

Since we know that Ur(A) = Ur(B) (or otherwise she wouldn’t have mixed the
two pure strategies), we can solve both equations simultaneously. The compu-
tation yields p = 1/3 and Ur(A) = Ur(B) = 2/3. By symmetry, one can easily
find the expected utility for the column player. The strategy profile for the row
player is

sr =
[

2/3

1/3

]
,

and for the column player,

sc =
[

1/3

2/3

]
.

Let’s return to our model. We will use the fact that we know the probabilities
in which each player elects his strategies to reconstruct the payoff matrix. For
clarity, we will start with a parameterized payoff matrix as illustrated in Table 4.
Given IP’s strategy i and FP’s strategy j, each entry Pi,j is the payoff for IP.
Note that since this is a zero-sum game, the payoff for FP is −Pi, j.
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Coal Electricity Steel Dummy
Coal P1,1 P1,2 P1,3 P1,4

Electricity P2,1 P2,2 P2,3 P2,4

Steel P3,1 P3,2 P3,3 P3,4

Dummy P4,1 P4,2 P4,3 P4,4

Table 4: Parameterized Payoff Matrix

Recall that the strategy profiles for IP and FP are

sIP =


0.17
0.17
0.15
0.51

 and sFP =


0.13
0.24
0.12
0.51

 ,

respectively. The expected utility for IP is

UIP = 0.13 · P1,1 + 0.24 · P1,2 + 0.12 · P1,3 + 0.51 · P1,4

= 0.13 · P2,1 + 0.24 · P2,2 + 0.12 · P2,3 + 0.51 · P2,4

= 0.13 · P3,1 + 0.24 · P3,2 + 0.12 · P3,3 + 0.51 · P3,4

= 0.13 · P4,1 + 0.24 · P4,2 + 0.12 · P4,3 + 0.51 · P4,4 .

And for FP, the expected utility is

UFP = −0.17 · P1,1 − 0.17 · P2,1 − 0.15 · P3,1 − 0.51 · P4,1

= −0.17 · P1,2 − 0.17 · P2,2 − 0.15 · P3,2 − 0.51 · P4,2

= −0.17 · P1,3 − 0.17 · P2,3 − 0.15 · P3,3 − 0.51 · P4,3

= −0.17 · P1,4 − 0.17 · P2,4 − 0.15 · P3,4 − 0.51 · P4,4 .

We have eight equations with eighteen unknowns, so we are free to set ten
of them to zero. For reasons that will be discussed shortly, we will set P1,1 as
one and P1,3, P1,4, P2,2, P2,4, P3,1, P3,3, P4,1, P4,2, and P4,4 as zero. The new
system of equations is as follows:

UIP = 0.24 · P1,2 + 0.13
UIP = 0.13 · P2,1 + 0.12 · P2,3

UIP = 0.24 · P3,2 + 0.51 · P3,4

UIP = 0.12 · P4,3

UFP = −0.17 · P2,1 − 0.17
UFP = −0.17 · P1,2 − 0.15 · P3,2

UFP = −0.17 · P2,3 − 0.51 · P4,3

UFP = −0.15 · P3,4

.
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Solving simultaneously yields

P1,2 ≈ −0.7558
P2,1 ≈ −1.3023
P2,3 ≈ 0.9826
P3,2 ≈ 0.5140
P3,4 ≈ −0.3426
P4,3 ≈ −0.4283
UIP ≈ −0.0514
UFP ≈ 0.0514

.

Our new payoff matrix is presented in Table 5. [[Draft only. I am thinking of
parameterizing it differently. -Ben]]

Coal Electricity Steel Dummy
Coal 1 -0.7558 0 0
Electricity -1.3023 0 0.9826 0
Steel 0 0.5140 0 -0.3426
Dummy 0 0 -0.4283 0

Table 5: Payoff Matrix
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