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Let G(2, 1, n) ∼= C2 o Sn, where n ≥ 2, be the monomial matrix group of n × n matrices with
exactly one nonzero entry in every column and row, and the nonzero entries are in C2, the cyclic
group of order two. In this paper, we classify the irreducible representations of G(2, 1, n).

Recall that G(2, 1, n) is generated by {e1, s1, . . . , sn−1} with the following relations:

e1s1e1s1 = s1e1s1e1, sisj = sjsi for |i− j| ≥ 1, sisi+1si = si+1sisi+1, (1)

e2
1 = s2

1 = · · · = s2
n−1 = 1 .

It is often more convenient, however, to define the elements ej = sj−1ej−1sj−1 for j = 2, . . . , n and
to think of G(2, 1, n) as generated by {e1, . . . , en, s1, . . . , sn−1} with the relations

eiej = ejei, eisj = sjeisj , sisj = sjsi for |i− j| ≥ 1, sisi+1si = si+1sisi+1,

e2
1 = s2

1 = · · · = s2
n−1 = 1 .

We shall switch back and forth between the two presentations of G(2, 1, n) in the following discus-
sion.

Before we can state the classification theorem, we must extend the definitions of a tableau of
shape λ and a standard tableau of shape λ to an ordered pair λ = (λ(1), λ(2)) of partitions with n

total boxes. We also provide a natural extension to the definition of the tableau content C(T (i))
of the box containing i in a standard tableau T of shape λ to the case when λ is an ordered pair
(λ(1), λ(2)) of partitions with n total boxes.

Definition 1. A tableau of shape λ, where λ is an order pair (λ(1), λ(2)) of partitions with n total
boxes, is a filling of the boxes of λ by 1, 2, . . . , |λ(1)|+ |λ(2)|.

Definition 2. Let T be a tableau of shape λ = (λ(1), λ(2)). Then T is said to be a standard tableau
of shape λ if the entries in the fillings of λ(1) and λ(2) each increase in rows and columns.
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this license, visit http://creativecommons.org/licenses/by/2.5. Source code with limited rights can be found at
http://www.bens.ws/professional.php.
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Definition 3. Let T be a standard tableau of shape λ = (λ(1), λ(2)). The tableau content C(T (i))
of the box containing i in T is the content cλ(1)

(
i

)
if the box containing i is in the filling of λ(1)

and cλ(2)

(
i

)
otherwise.

We can now state the main theorem of this paper.

Theorem 4. Let G(2, 1, n) be the monomial matrix group of n×n matrices with exactly one nonzero
entry in every column and row, and the nonzero entries are in C2, the cyclic group of order two.

1. The irreducible G(2, 1, n)-modules V λ are indexed by ordered pairs λ = (λ(1), λ(2)) of partitions
with n total boxes.

2. Their dimensions are dim(V λ) = nλ, where nλ is the number of standard tableaux of shape
λ.

3. If V λ = C -span{vT | T is a standard tableau of shape λ}, then

vT ei = (−1)m+1vT ,

vT si = CT (i)vT + (1 + CT (i))vTsi ,

where (i) the box containing i is in the partition λ(m); (ii) vTsi = 0 if vTsi is not a standard
tableau; and (iii) CT (i) = 1

C(T (i+1))−C(T (i)) if the boxes containing i and i+1 are in the same
partition λ(k) and zero otherwise.

Before we proceed with the proof of the theorem, we outline the crucial steps of the proof. We
will show that (i) the V λ are indeed G(2, 1, n)-modules; (ii) any two different such modules are
non-isomorphic; (iii) these modules are irreducible; and (iv) this classification exhausts the list of
irreducible G(2, 1, n)-modules, up to isomorphism.

To prove (i), we will check that the relations of G(2, 1, n) are preserved under the action of
the group on V λ. The proof of (ii) will rely on generating elements analogous to the Murphy
elements. We will show that their actions on a standard tableau completely determine the filling
of the tableau. An immediate result of this would be (ii). For (iii), we will show that V λ does not
contain nonzero submodules besides itself by deriving some properties of the standard tableaux.
Lastly, the proof of (iv) will involve a counting argument.

The following general observation will assist us through out the rest of the proof: The definition
of a standard tableau implies that if neither of the boxes immediately to the right and immediately
below a box containing i contain i + 1, then they contain values greater than i + 1. Moreover, the
box containing i + 1 is either in a different partitions λ(k) or it is strictly below and strictly to the
right of the box containing i. In either case, the boxes above and to the left of the box containing
i + 1 contain values less than i. In such a case, the tableau resulting from permuting the boxes
containing i and i + 1 is a standard tableau.

We summarize this result with the following remark:
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Remark 5. Let λ = (λ(1), λ(2)) be an order pair of partitions with n total boxes, and let T be
a standard partition of shape λ. Then whenever the boxes containing i and i + 1 in T are not
adjacent, Tsi is also a standard tableau of shape λ. In particular, if the boxes containing i and
i + 1 are in different partitions λ(1) and λ(2), then Tsi is a standard tableau of shape λ.

Proving Theorem 4 will be significantly easier to follow if we establish a few lemmas to help
us later. The first lemma proves item (i) of the outline we presented above: the V λ are G(2, 1, n)-
modules. The proof is rather long and tedious, though not particularly involved. In the interest of
a smooth reading flow, the reader may wish the assume the lemma for the time being and return
to its proof later.

Lemma 6. Let λ = (λ(1), λ(2)) be an order pair of partitions with n total boxes. Then V λ =
C -span{vT | T is a standard tableau of shape λ} is a G(2, 1, n)-module with respect to the actions
defined in Theorem 4(3).

Proof. We need to check that the relations defined in (1) are satisfied by the speficied actions. In
the rest of the proof, let vT ∈ V λ for a standard tableau T .

1. The relation e2
1 = 1

We start by showing that vT e2
1 = vT . Suppose first that the box containing 1 is in λ(1). Then

vT e2
1 = vT e1 = vT . Otherwise, the box containing 1 is in λ(2). Then it follows that vT e2

1 = −vT ei =
vT , as needed.

2. The relation s2
i = 1

Next, we show that vT s2
i = vT for 1 ≤ i ≤ n − 1. We consider the following cases regarding the

relative positions of the boxes containing i and i + 1 in T :

(a) the two boxes are adjacent;

(b) the two boxes are not adjacent.

In case (a), we have CT (i) = ±1 and Tsi is not standard. Thus, vT s2
i = ±vT si = vT . In case

(b), we recall from Remark 5 that Tsi is standard. We also clearly have CTsi(i) = −CT (i). Hence,

vT s2
i = CT (i)vT si +

[
1 + CT (i)

]
vTsisi

= CT (i)2vT + CT (i)
[
1 + CT (i)

]
vTsi − CT (i)

[
1 + CT (i)

]
vTsi +

[
1− CT (i)

][
1 + CT (i)

]
vT = vT .
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3. The relation sisj = sjsi

Next, we show that vT sisj = vT sjsi for 1 ≤ i, j ≤ n − 1 and |i − j| > 1. We observe that
CT (i) = CTsj (i) and CT (j) = CTsi(j). Thus,

vT sisj = CT (i)vT sj +
[
1 + CT (i)

]
vTsisj

= CT (i)CT (j)vT + CT (i)
[
1 + CT (j)

]
vTsj +

[
1 + CT (i)

]
CT (j)vTsi +

[
1 + CT (i)

][
1 + CT (j)

]
vTsisj

= CT (j)CT (i)vT + CT (j)
[
1 + CT (i)

]
vTsi +

[
1 + CT (j)

]
CT (i)vTsj +

[
1 + CT (j)

][
1 + CT (i)

]
vTsjsi

= CT (j)vT si +
[
1 + CT (j)]vTsjsi = vT sjsi ,

where we recall that for any σ ∈ Sn, we define vTσ = 0 if vTσ is not a standard tableau.

4. The relation s1e1s1e1 = e1s1e1s1

The next relation we establish is vT s1e1s1e1 = vT e1s1e1s1. The box containing 1 must be at the
top left corner of one of the partitions λ(k). The box containing 2 can only be underneath the box
containing 1, to the right of the box containing 1, or at the top left corner of the other partition
λ(l). In each of these case we see that vT s1 = ±vT . Thus, for simplicity we write vT s1 = (−1)avT

for some integer a. Also, depending on whether the box containing 1 is in the partition λ(1) or λ(2),
we have vT e1 = ±vT . Again for simplicity, we write vT ei = (−1)bvT for some integer b. Then

vT s1e1s1e1 = (−1)avT e1s1e1 = (−1)a(−1)bvT s1e1 = (−1)bvT e1 = vT

= (−1)avT s1 = (−1)b(−1)avT e1s1 = (−1)bvT s1e1s1 = vT e1s1e1s1 ,

as needed.

5. The relation sisi+1si = si+1sisi+1

The last relation from the list in (1) we wish to establish is vT sisi+1si = vT si+1sisi+1, for 1 ≤ i ≤
n− 2. Here we have the following cases regarding the relative positions of boxes containing i and
i + 1 and i + 2:

(a) the three boxes are in one column or in one row;

(b) only two of the boxes are adjacent;

(c) none of the boxes is adjacent to another.

In case (a), note that vT si and vT si+1 are not standard. Hence, CT (i) = CT (i+1) = ±1, depending
on whether the boxes are lined up in a column or in a row. Thus, for simplicity, we write CT (i) =
(−1)a for some integer a. Then,

vT sisi+1si = (−1)avT si+1si = (−1)2avT si = (−1)3a = (−1)2avT si+1 = (−1)avT sisi+1

= vT si+1sisi+1 .
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In case (b), consider first the case when the boxes contained i and i+1 are adjacent, and again
write CT (i) = (−1)a for some integer a. Then U = C -span{vT , vT si+1, vT si+1si} ⊆ V λ contains
all the different scenarios satisfying the condition in case (b). Furthermore, U is invariant under
H = 〈si, si+1〉, so it suffices to check the actions of H on U . Direct computation shows that we
have the representation ρ : H → GL3(C) given by

si 7→

(−1)a 0 0
0 CTsi+1(i) 1 + CTsi+1(i)
0 1− CTsi+1(i) −CTsi+1(i)

 si+1 7→

 CT (i) 1 + CT (i) 0
1− CT (i) −CT (i) 0

0 0 (−1)a

 .

It follows that vT sisi+1si = vT si+1sisi+1.
We prove case (c) similarly. Let U = C -span{vT , vTsi , vTsi+1 , vTsisi+1 , vTsisi+1 , vTsisi+1si} and

H as above. Then U is invariant under H. The representation we seek is ρ : H → GL6(C) given
by

si 7→



CT (i) 1 + CT (i) 0 0 0 0
1− CT (i) −CT (i) 0 0 0 0

0 0 CTsi+1(i) 0 1 + CTsi+1(i) 0
0 0 0 CTsisi+1(i) 0 1 + CTsisi+1(i)
0 0 1− CTsi+1(i) 0 −CTsi+1(i) 0
0 0 0 1− CTsisi+1(i) 0 −CTsisi+1(i)



si+1 7→



CTsisi+1(i) 0 1 + CTsisi+1(i) 0 0 0
0 CTsi+1(i) 0 1 + CTsi+1(i) 0 0

1− CTsi+1(i) 0 −CTsi+1(i) 0 0 0
0 1− CTsi+1(i) 0 −CTsi+1(i) 0 0
0 0 0 0 CT (i) 1 + CT (i)
0 0 0 0 1− CT (i) −CT (i)


.

And again it follows that vT sisi+1si = vT si+1sisi+1 to complete the proof of the lemma.

The next lemma we prove will assist us in proving item (ii) described in the outline above. We
first define a generalization to the Murphy elements, which we will denote by µ1, . . . , µn. These
elements are members of the group algebra CG(2, 1, n). We will show that their actions on a
standard tableau T of shape λ = (λ(1), λ(2)) completely determines the filling of T .

Definition 7. For k : 1, . . . , n, define the generalized Murphy element µk ∈ CG(2, 1, n) to be
µk = kek + 1

2

∑k−1
j=1(1 + ejek)(j, k), where (j, k) ∈ Sn is a transposition, and the sum is taken to be

zero if k = 1.

Lemma 8. Let λ = (λ(1), λ(2)) be an order pair of partitions with n total boxes, and consider the
G(2, 1, n)-module V λ as defined above. Then for any vT ∈ V λ, where T is a standard tableau of

5



shape λ, and for any generalized Murphy element µk, we have

vT µk = DT (k)vT , (2)

where we define DT (k) as follows:

DT (k) =

(C(T (k)) + k) if the box containing k is in λ(1)

(C(T (k))− k) otherwise
.

Furthermore, the sequence DT (1), . . . , DT (n) uniquely determines the tableau T .

Proof. Note that for i : 1, . . . , k − 2 we have sk−1(1 + eiek−1)(i, k − 1)sk−1 = (1 + eiek)(i, k) and
sk−1(k − 1)ek−1sk−1 = (k − 1)ek. Thus,

µk = sk−1µk−1sk−1 + 1
2(1 + ek−1ek)sk−1 + ek .

We prove the first part of the lemma by induction. By definition, µ1 = e1 so vT µ1 = vT if the box
containing 1 is in λ(1) and vT µ1 = −vT otherwise. Since we must have C(T (1)) = 0, the base case
is established. In the following, suppose that the lemma is proven for µk−1.

Suppose that the boxes containing k and k − 1 are in different partitions λ(1) and λ(2), not
necessarily respectively. Then vT

[
1
2(1 + ek−1ek)

]
= 1

2(vT − vT ) = 0, and also, by Remark 5, we
know that vTsk−1

is standard. If the box containing k is in the partition λ(1), then

vT µk = vT

[
sk−1µk−1sk−1 + 1

2(1 + ek−1ek)sk−1 + ek

]
= vT (sk−1µk−1sk−1 + ek)

= vTsk−1
µk−1sk−1 + vT = (C(T (k)) + k − 1)vTsk−1

sk−1 + vT = (C(T (k)) + k)vT .

Otherwise, if k is in the partition λ(2), then

vT µk = vT

[
sk−1µk−1sk−1 + 1

2(1 + ek−1ek)sk−1 + ek

]
= vT (sk−1µk−1sk−1 + ek)

= vTsk−1
µk−1sk−1 − vT = (C(T (k))− k + 1)vTsk−1

sk−1 − vT = (C(T (k))− k)vT ,

as needed.
Now suppose that boxes containing k and k − 1 are in the same partition λ(l). Then we have

vT

[
1
2(1 + ek−1ek)

]
= 1

2(vT + vT ) = vT . Suppose first that l = 1. Then,

vT µk = vT (sk−1µk−1sk−1 + sk−1 + ek) = vT [(sk−1µk−1 + 1) sk−1 + ek]

=
(

1
C(T (k))−C(T (k−1))vT µk−1 +

(
1 + 1

C(T (k))−C(T (k−1))

)
vTsk−1

µk−1 + vT

)
sk−1 + vT

=
(

C(T (k−1))+k−1
C(T (k))−C(T (k−1))vT +

(
C(T (k)) + k − 1

) (
1 + 1

C(T (k))−C(T (k−1))

)
vTsk−1

+ vT

)
sk−1 + vT

=
(

C(T (k))+k−1
C(T (k))−C(T (k−1))vT +

(
C(T (k)) + k − 1

) (
1 + 1

C(T (k))−C(T (k−1))

)
vTsk−1

)
sk−1 + vT

= (C(T (k)) + k − 1)vT sk−1sk−1 + vT = (C(T (k)) + k)vT .
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If, on the other hand, l = 2, then

vT µk = vT (sk−1µk−1sk−1 + sk−1 + ek) = vT [(sk−1µk−1 + 1) sk−1 + ek]

=
(

1
C(T (k))−C(T (k−1))vT µk−1 +

(
1 + 1

C(T (k))−C(T (k−1))

)
vTsk−1

µk−1 + vT

)
sk−1 − vT

=
(

C(T (k−1))−k+1
C(T (k))−C(T (k−1))vT +

(
C(T (k))− k + 1

) (
1 + 1

C(T (k))−C(T (k−1))

)
vTsk−1

+ vT

)
sk−1 − vT

=
(

C(T (k))−k+1
C(T (k))−C(T (k−1))vT +

(
C(T (k))− k + 1

) (
1 + 1

C(T (k))−C(T (k−1))

)
vTsk−1

)
sk−1 − vT

= (C(T (k))− k + 1)vT sk−1sk−1 − vT = (C(T (k))− k)vT ,

to complete the proof by induction of the first part of the lemma.
Consider any 1 ≤ k ≤ n. The minimal value C(T (k)) can attain is −k+1, which is possible only

if all the numbers 1, . . . , k are placed in boxes of the same column in either λ(1) or λ(2). Similarly,
the maximal value C(T (k)) can attain is k − 1, which is possible only if all the numbers 1, . . . , k

are placed in boxes of the same row in either λ(1) or λ(2). Thus, DT (k) is bounded between 1 and
2k − 1 if k is placed in a box in λ(1) and is bounded between −2k + 1 and −1 otherwise. That is,
knowing the value of DT (k) determines in which partition k is placed. However, since the tableau
T is standard, in any given partition λ(l) we know that no two different possible placing of the box
containing k can have the same content C(T (k)). The second part of the lemma follows.

While the previous lemma showed that the basis elements vT are eigenvectors of the generalized
Murphy elements µk, the next lemma shows that, up to scaling, they are the only such eigenvectors.
The two lemmas together will be crucial in proving that two modules V λ and V γ are isomorphic
only if λ = γ.

Lemma 9. Let λ = (λ(1), λ(2)) be an order pair of partitions with n total boxes, and consider the
G(2, 1, n)-module V λ as defined above. If v ∈ V λ is an eigenvector for all generalized Murphy
elements µ1, . . . , µn then v = cvT for some standard tableau T of shape λ and complex number c.

Proof. Let v =
∑

T aT vT , where we sum over the standard tableaux of shape λ and the coefficients
are from the complex field. By hypothesis, we have vµk = αkv for a complex number αk. On the
other hand, from equation (2) we know that vµk =

∑
T aT D(T (k))vT . Thus, all but one aT must

vanish, and c = αk = D(T (k)).

The last lemma we provide shows that standard tableaux form a sequence of tableaux differing
by a single transposition. We will later construct a submodule of V λ and show that it contains one
of the basis elements vT . The following lemma will assist us in showing that, in fact, all the basis
elements are contained in the submodule, proving that the submodule is the entire module V λ. We
precede the lemma with an extension to the definition of a column reading tableau to the case of
an ordered pair of partitions.

Definition 10. Let λ = (λ(1), λ(2)) be a partition of n total boxes. Then the column reading
tableau of shape λ is a tableau C of shape λ satisfying the following conditions: (a) its λ(1)-filling
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is the same as the column reading tableau of shape λ(1); and (b) its λ(2)-filling is the same as the
column reading tableau of shape λ(2), but with each entry k replaced by k + |λ(1)|.

Lemma 11. If P and Q are standard tableaux of shape λ = (λ(1), λ(2)), then there exists a sequence
of standard tableaux P, Psi1

, Psi1
,si2

, . . . , Psi1
,si2

,...,sir
= Q.

Proof. Consider the tableau P . Let i1 be the maximal number such that either (a) the box con-
taining i is strictly above and strictly to the right of the box containing i1 + 1; or (b) the box
containing i is in λ(2), while the box containing i1 + 1 is in λ(1). If no such i1 exists, then P = C,
the column reading tableau of λ.

Otherwise, note the Psi1
is a standard tableau as well. Again find a maximal number with

respect to Psi1
satisfying the conditions above and denote by i2. Continue in this manner to

generate ij . The column reading tableau is characterized by the conditions above, and by Lemma 8
it is the only tableau satisfying these conditions. Furthermore, by choosing the maximal element
to satisfy the conditions above, we guarantee that at no point will we arrive at a standard tableau
we have seen already. Thus, the algorithm must terminate for some Psi1

,si2
,...,sis

= C.
Apply the same algorithm to Q to find Qsj1

,sj2
,...,sjt

= C. Then we have found a sequence
P, Psi1

, . . . , Psi1
,si2

,...,sir
= C = Qsj1

,sj2
,...,sjt

, . . . , Qsj1
, Q of standard tableaux, as needed.

We are now ready to prove the classification theorem.

Proof (of the classification theorem, Theorem 4). As mentioned above, Lemma 6 proves item (i) of
the outline: the V λ are G(2, 1, n)-modules.

Consider any two partitions λ = (λ(1), λ(2)) and γ = (γ(1), γ(2)) with n total boxes. Then we
need to show that V λ and V γ are isomorphic as G(2, 1, n)-modules if and only if γ = λ; this is
item (ii) of the outline. The right-to-left implication is trivial. Conversely, suppose θ : V λ → V γ

is an isomorphism of G(2, 1, n)-modules. Consider a standard tableau T of shape λ. Since θ is
a homomorphism, we have C(T (k))

(
vT

)
θ =

(
C(T (k))vT

)
θ = (vT µk)θ =

(
(vT )θ

)
µk. Hence, by

Lemma 9 we know that (vT )θ = cvQ for a standard tableau Q and some complex number c. By
Lemma 8 we know that the sequence D(T (1)), . . . , D(T (n)) and D(Q(1)), . . . , D(Q(n)) uniquely
determine T and Q, which by the isomorphism θ we conclude to be the same. This completes the
proof of (ii).

We have established that the V λ defined in the statement of the theorem are non-isomorphic
G(2, 1, n)-modules. Next we prove item (iii): that each such V λ is irreducible. Fix some nonzero
v0 =

∑
T aT vT ∈ V λ, and let M = {v0x | x ∈ CG(2, 1, n)}, a submodule of V λ. We show that

M = V , which in turn implies that the only nonzero submodule of V λ is itself, or equivalently, that
V λ is irreducible.

For each standard tableau T , consider the element

πT =
∏

−2n≤j≤2n
j 6=DT (1)

µ1 − j

DT (1)− j

∏
−2n≤j≤2n
j 6=DT (2)

µ2 − j

DT (2)− j
· · ·

∏
−2n≤j≤2n
j 6=DT (n)

µn − j

DT (n)− j
.
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If we let πT act on a basis element vQ for Q 6= T , then the product vanishes due to j assuming a
value D(Q(k)) for a k on which Q and T differ. On the other hand, if we let πT act on vT , then
the ratios in the product are all 1, so πT fixes vT . That is, we have proved

vQπT =

0 if Q 6= T

vQ otherwise
. (3)

Consider again v0 =
∑

T aT vT ∈ V λ. From equation (3), for each nonzero aT we can write
vT = v0

(
πT
aT

)
∈ M . By construction, there exists such a nonzero aQ, as otherwise v0 = 0. In

particular, we have shown that at least one basis element vQ is a member of M .
Suppose Qsi is a standard tableau for some si. If the boxes containing i and i+1 are in different

partitions λ(1) and λ(2), then vQsi = vQsi ∈ M . Otherwise, the boxes containing i and i + 1 are
in the same partitions λ(l). Then vQsi = 1

C(Q(i+1))−C(Q(i))vQ +
(
1 + 1

C(Q(i+1))−C(Q(i))

)
vQsi . Note

that it is impossible that C(Q(i + 1))−C(Q(i)) = −1, as this would imply that the two boxes are
adjacent, contradicting the hypothesis that Qsi is a standard tableau. It follows that vQsi ∈ M . By
Lemma 11 and induction on the number of transpositions, we have that vT ∈ M for all standard
tableaux T . But then M = V λ, so V λ is irreducible to prove (iii).

To prove the last item (iv), we use an indirect counting argument. Let G be any finite group.
In [2], Theorem 15.3, it is proven that the number of irreducible G-modules is equal to the number
of conjugacy classes of G. In [1], it is shown that the conjugacy classes of G(2, 1, n) are indexed
by ordered pairs of partitions (λ(1), λ(2)) of n total boxes. Thus, there are no other irreducible
G(2, 1, n)-modules than the ones defined in the theorem. This concludes the proof of the theorem.

Using Theorem 4, it is possible to derive the character table of different groups G(2, 1, n) for
an n > 2. We analyze the group of G(2, 1, 3). We choose the following representatives for the
conjugacy classes of G(2, 1, 3):

g1 = 1 g2 = e1e2e3 g3 = e1e2 g4 = e1 g5 = s1

g6 = e1s1 g7 = e3s1 g8 = e1e3s1 g9 = s1s2 g10 = e1s1s2 .

The corresponding sizes of the centralizers |CG(gr)| are as follows:

|CG(g1)| = 48 |CG(g2)| = 48 |CG(g3)| = 16 |CG(g4)| = 16 |CG(g5)| = 8

|CG(g6)| = 8 |CG(g7)| = 8 |CG(g8)| = 8 |CG(g9)| = 6 |CG(g10)| = 6 .

The character table of G(2, 1, 3) is the following:
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g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

|CG(gr)| 48 48 16 16 8 8 8 8 6 6

χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1 −1 −1 1 1
χ3 1 −1 1 −1 1 −1 −1 1 1 −1
χ4 1 −1 1 −1 −1 1 1 −1 1 −1
χ5 2 2 2 2 0 0 0 0 −1 −1
χ6 2 −2 2 −2 0 0 0 0 −1 1
χ7 3 −3 −1 1 1 1 −1 −1 0 0
χ8 3 −3 −1 1 −1 −1 1 1 0 0
χ9 3 3 −1 −1 1 −1 1 −1 0 0
χ10 3 3 −1 −1 −1 1 −1 1 0 0

We finish this discussion with a conjecture of the classification theorem of G(p, 1, n) ∼= Cp o Sn,
where n, p ≥ 2. The term a standard tableau of shape λ and the notation C(T (i)) appearing in this
conjecture are the natural generalizations of the terms defined in Definitions 2 and 3.

Conjecture 12. Let G(p, 1, n) be the monomial matrix group of n × n matrices with exactly one
nonzero entry in every column and row, and the nonzero entries are in Cp, the cyclic group of order
p.

1. The irreducible G(2, 1, n)-modules V λ are indexed by p-tuples λ = (λ(1), . . . , λ(p)) of partitions
with n total boxes.

2. Their dimensions are dim(V λ) = nλ, where nλ is the number of standard tableaux of shape
λ.

3. If V λ = C -span{vT | T is a standard tableau of shape λ}, then

vT ei = e
2πir

p vT ,

vT si = CT (i)vT + (1 + CT (i))vTsi ,

where (i) the box containing i is in the partition λ(r) for some 1 ≤ r ≤ p; (ii) vTsi = 0 if vTsi

is not a standard tableau; and (iii) CT (i) = 1
C(T (i+1))−C(T (i)) if the boxes containing i and

i + 1 are in the same partition λ(k) and zero otherwise.
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